.

Saturday, March 9, 2019

Food Test to Determine the Presence of Reducing Sugars and Non-Reducing Sugars Essay

Apparatus/Materials bunsen burner burner Solutions A, B, C, D, E, F and G (unknown) Measuring Syringes Stirring Rod Beakers Test tubes (7)plus carrier and tray Copper sulphate effect (CuSO4) White dropping ray tripod radical and mesh -stopwatch Biuret? s solution Sodium Hydroxide solution (NaOH) (or unripe Hydroxide solution) Hydrochloric Acid (HCl) Sodium Hydrogencarbonate (NaHCO3) Iodine Solution(I2) (or Potassium Iodide solution) Ethanol (C2H5OH) distilled pee (H2O) Test regularity Reducing Sugars 2cm3 of solutions A-G were position into dissever, labelled riddle tubes development separate meter syringes.An equal volume (2cm3) of benedict? s solution was thus added to the solutions in the test tubes. The tubes were thence piano shaken and primed(p) in a water bath until all possible interchange in colour was noticed. Observation Inference/Explanation A- changed from a downright dingy colour to purple. B- changed from a bluish colour to a chicke nhearted orangish tree colour from the summon middle began round green then unblemished solution saturnine bright orange in colour. C- sour from sad to a dark blue/purple. D- no reaction E- no reaction F- changed from a bluish colour to a yellow-bellied orange colour from the surface middle began turning greenthen entire solution turned bright orange in colour. G- no reaction. benedict? s solution contains copper sulphate. Reducing Sugars reduce soluble blue copper sulphate, containing copper (II) ions (Cu2+) to insoluble red-brown copper oxide containing copper (I). The latter is seen as a precipitate. Therefore, solutions containing reducing sugars were B and F. Those not containing reducing sugars were A, C, D, E, and G. Test Method Observation Inference Nonreducing Sugars 2cm3 of solutions A-G were placed into separate, labelled test tubes using separate measuring syringes. 1cm3 of Hydrochloric (HCl) acid was then added to thesolution in the test tubes. The test tubes we re placed into the water bath for one minute and were then neutralized with 2cm3 atomic number 11 hydrogencarbonate (NaHCO3). The benedict? s test was then carried out (where an equal volume2cm3 -of Benedict? s solution was then added to the solutions in the test tubes. The tubes were then gently shaken and placed in a water bath until any possible change in colour was noticed. ).A- no reaction B- changed from a bluish colour to a yellow orange colour from the surface middle began turning green then entire solution turned bright orange in colour. C- no reaction D-changed from a bluish colourto a yellow orange colour from the surface middle began turning green then entire solution turned bright orange in colour. E- no reaction F-changed from a bluish colour to a yellow orange colour from the surface middle began turning green then entire solution turned bright orange in colour. G changed from a bluish/ purple colour to a yellow orange colour from the surface middle began turning gr een then entire solution turned bright orange in colour.A disaccharide can be hydrolyzed to its monosaccharide constituents by boiling with dilute hydrochloric acid. Sucrose, for example, is hydrolyzed to glucoseand fructose, twain of which are reducing sugars (and would give the reducing sugar result with the Benedict? s test) 2cm3 of solutions A-G were placed into separate, labelled test tubes using separate measuring syringes. An equal volume (2cm3) of sodium hydroxide solution were added to the solutions in the test tubes and mixed. Approximately two drops of Copper Sulphate solution was added and mixed. Observations were recorded. A- changed from a dull solution to a purple/lilac colour. B- no reactio C-changed from a pallid solution to a purple/lilac colour. D- no reaction E- no reaction, but solution E floated above the added

No comments:

Post a Comment